Search results for "Primordial black holes"

showing 7 items of 7 documents

Implications for dark matter direct detection in the presence of LIGO-motivated primordial black holes

2019

We discuss formation of dark matter (DM) mini-halos around primordial black holes (PBHs) and its implication on DM direct detection experiments, including axion searches. Motivated by LIGO observations, we consider $f_{\textrm{DM}} \simeq 0.01$ as the fraction of DM in PBHs with masses $10 M_{\odot} - 70 M_{\odot}$. In this case, we expect the presence of dressed PBHs after Milky Way halo formation with mini-halo masses peaked around $M_{\textrm{halo}} \sim (50-55) M_{\textrm{PBH}}$. We analyze the effect of tidal forces acting on dressed PBHs within the Milky Way galaxy. In the solar neighborhood, the mini-halos are resistant against tidal disruption from the mean-field potential of the ga…

High Energy Physics - TheoryDISRUPTIONHALO MODELSPrimordial black holeAstrophysicsDark mini-halosdark matter direct detectionkosmologia01 natural sciencesGeneral Relativity and Quantum CosmologyLIMITSHigh Energy Physics - Phenomenology (hep-ph)BulgePhysicsprimordial black holeslcsh:QC1-999High Energy Physics - PhenomenologyBULGEMILKY-WAYLIGO-Virgo collaborationHaloAstrophysics - Cosmology and Nongalactic Astrophysicsaxion dark matterNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Axion dark matterMilky WayDark mattermustat aukotFOS: Physical sciencesPrimordial black holesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsDark matter direct detection114 Physical sciencespimeä ainedark mini-halos0103 physical sciences010306 general physicsAxionCP CONSERVATIONAstrophysics::Galaxy Astrophysics010308 nuclear & particles physicsCONSTRAINTSAstrophysics - Astrophysics of GalaxiesLIGOGalaxyHigh Energy Physics - Theory (hep-th)Astrophysics of Galaxies (astro-ph.GA)lcsh:Physics
researchProduct

PBH assisted search for QCD axion dark matter

2022

The entropy production prior to BBN era is one of ways to prevent QCD axion with the decay constant $F_{a}\in[10^{12}{\rm GeV},10^{16}{\rm GeV}]$ from overclosing the universe when the misalignment angle is $\theta_{\rm i}=\mathcal{O}(1)$. As such, it is necessarily accompanied by an early matter-dominated era (EMD) provided the entropy production is achieved via the decay of a heavy particle. In this work, we consider the possibility of formation of primordial black holes during the EMD era with the assumption of the enhanced primordial scalar perturbation on small scales ($k>10^{4}{\rm Mpc}^{-1}$). In such a scenario, it is expected that PBHs with axion halo accretion develop to ultracomp…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)axionsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesmustat aukotAstrophysics::Cosmology and Extragalactic Astrophysicshiukkasfysiikkakosmologianeutron starspimeä aineHigh Energy Physics - Phenomenology (hep-ph)neutronitähdetParticle Physics - PhenomenologyHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEdark matter experimentsHigh Energy Physics::Phenomenologyprimordial black holesAstronomy and Astrophysicshep-phHigh Energy Physics - Phenomenologyastro-ph.COkvanttiväridynamiikkaHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Femtolensing by dark matter revisited

2018

Femtolensing of gamma ray bursts (GRBs) has been put forward as an exciting possibility to probe exotic astrophysical objects with masses below $10^{-13}$ solar masses such as small primordial black holes or ultra-compact dark matter minihalos, made up for instance of QCD axions. In this paper we critically review this idea, properly taking into account the extended nature of the source as well as wave optics effects. We demonstrate that most GRBs are inappropriate for femtolensing searches due to their large sizes. This removes the previous femtolensing bounds on primordial black holes, implying that vast regions of parameter space for primordial black hole dark matter are not robustly con…

Astrophysics and AstronomyCosmology and Nongalactic Astrophysics (astro-ph.CO)spectraAstrophysics::High Energy Astrophysical PhenomenaDark mattergravitational lensinghaloFOS: Physical sciencesPrimordial black holegamma ray experimentsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsParameter space01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsAxionParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)Solar mass010308 nuclear & particles physicsraydark matter experimentsprimordial black holesAstronomy and Astrophysicshep-phPhysical opticsHigh Energy Physics - Phenomenologypair production13. Climate actionastro-ph.COGamma-ray burstlimitsAstrophysics - High Energy Astrophysical Phenomenagravitational-wavesAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Semiclassical geons as solitonic black hole remnants

2013

We find that the end state of black hole evaporation could be represented by non-singular and without event horizon stable solitonic remnants with masses of the order the Planck scale and up to similar to 16 units of charge. Though these objects are locally indistinguishable from spherically symmetric, massive electric (or magnetic) charges, they turn out to be sourceless geons containing a wormhole generated by the electromagnetic field. Our results are obtained by interpreting semiclassical corrections to Einstein's theory in the first-order (Palatini) formalism, which yields second-order equations and avoids the instabilities of the usual (metric) formulation of quadratic gravity. We als…

Electromagnetic fieldHigh Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)Event horizonDark matterSemiclassical physicsFOS: Physical sciencesPrimordial black holeGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationGeneral Relativity and Quantum Cosmology0103 physical sciencesWormhole010306 general physicsmodified gravityMathematical physicsPhysics010308 nuclear & particles physicsprimordial black holesAstronomy and Astrophysicsquantum field theory on curved spaceBlack holeHigh Energy Physics - Theory (hep-th)WormholesAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run

2018

We present the first Advanced LIGO and Advanced Virgo search for ultracompact binary systems with component masses between 0.2 $M_\odot$ - 1.0 $M_\odot$ using data taken between September 12, 2015 and January 19, 2016. We find no viable gravitational wave candidates. Our null result constrains the coalescence rate of monochromatic (delta function) distributions of non-spinning (0.2 $M_\odot$, 0.2 $M_\odot$) ultracompact binaries to be less than $1.0 \times 10^6 \text{Gpc}^{-3} \text{yr}^{-1}$ and the coalescence rate of a similar distribution of (1.0 $M_\odot$, 1.0 $M_\odot$) ultracompact binaries to be less than $1.9 \times 10^4 \text{Gpc}^{-3} \text{yr}^{-1}$ (at 90 percent confidence). N…

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftendensity: fluctuationMACHOAstronomyGeneral Physics and AstronomyPrimordial black holeAstrophysicsCoalescence01 natural sciencesGeneral Relativity and Quantum CosmologylocalizationLIMITSddc:550Massive compact halo objectLIGOneutron starQCQBPhysicseducation.field_of_studyPhysicsDensity fluctuationBinary systemsgravitational wavesPhysical SciencesSearch enginesastro-ph.COblack hole: primordialAstrophysics - Cosmology and Nongalactic AstrophysicsGravitationCosmology and Nongalactic Astrophysics (astro-ph.CO)gr-qcBinary formationAstrophysics::High Energy Astrophysical PhenomenaPopulationDark matterPhysics MultidisciplinaryEarly universeFOS: Physical sciencesPrimordial black holesGeneral Relativity and Quantum Cosmology (gr-qc)dark matter: densityAstrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesCoalescence rateGravitation and AstrophysicsPhysics and Astronomy (all)General Relativity and Quantum Cosmologybinary: coalescence0103 physical sciencesddc:530Delta functions010306 general physicseducationSTFCAstrophysics::Galaxy AstrophysicsScience & Technologymass: solar010308 nuclear & particles physicsGravitational waveStellar evolutionsbinary: formationgravitational radiationRCUKblack hole: massGalaxiesStarsGalaxyLIGOBlack holeVIRGOPhysics and Astronomyblack hole: binarygravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikMicro-lensing[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Search for Subsolar Mass Ultracompact Binaries in Advanced LIGO's Second Observing Run

2019

We present a search for subsolar mass ultracompact objects in data obtained during Advanced LIGO’s second observing run. In contrast to a previous search of Advanced LIGO data from the first observing run, this search includes the effects of component spin on the gravitational waveform. We identify no viable gravitational-wave candidates consistent with subsolar mass ultracompact binaries with at least one component between \ud0.2\ud \ud \udM\ud⊙\ud–\ud1.0\ud \ud \udM\ud⊙\ud. We use the null result to constrain the binary merger rate of (\ud0.2\ud \ud \udM\ud⊙\ud, \ud0.2\ud \ud \udM\ud⊙\ud) binaries to be less than \ud3.7\ud×\ud10\ud5\ud \ud \udGpc\ud−\ud3\ud \udyr\ud−\ud1\udand the binary …

Dewey Decimal Classification::500 | Naturwissenschaften::550 | Geowissenschaftenbinary: massAstrofísicaGravitacióFormation modeldensity: fluctuationAstronomyGeneral Physics and Astronomydetector: networkspin01 natural sciencesGeneral Relativity and Quantum CosmologyLIMITSblack hole: formationddc:550black holeDark MatterAstrophysics::Solar and Stellar AstrophysicsLIGOQCQBnucleus: interactionSettore FIS/01astro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)gravitational wave; physics; astronomyPhysicsarticleDensity fluctuationgravitational wavesPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]astro-ph.COAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomenablack hole: primordialGravitationAstrophysics - Cosmology and Nongalactic AstrophysicsMatter densitydensity: primordialCosmology and Nongalactic Astrophysics (astro-ph.CO)coolinggr-qcAstrophysics::High Energy Astrophysical PhenomenaPhysics MultidisciplinaryCooling mechanismPrimordial black holesFOS: Physical sciencesdark matter: densityGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGravity wavesNuclear interactionGravitation and AstrophysicsMergingGeneral Relativity and Quantum Cosmologynull resultSettore FIS/05 - Astronomia e Astrofisicabinary: coalescence0103 physical sciencesddc:530010306 general physicsAstrophysics::Galaxy AstrophysicsSTFCScience & Technologymass: solarCosmologiaStellar evolutions010308 nuclear & particles physicsMatter fractionsgravitational radiationRCUKblack hole: massGalaxiesbinary: compactStarsgravitational radiation detectordetector: sensitivityVIRGOPhysics and Astronomygravitational radiation: emissionDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Gravitational waves Black holes (astronomy) Gravitational self forcePhysical Review Letters
researchProduct

A brief review on primordial black holes as dark matter

2021

Primordial black holes (PBHs) represent a natural candidate for one of the components of the dark matter (DM) in the Universe. In this review, we shall discuss the basics of their formation, abundance and signatures. Some of their characteristic signals are examined, such as the emission of particles due to Hawking evaporation and the accretion of the surrounding matter, effects which could leave an impact in the evolution of the Universe and the formation of structures. The most relevant probes capable of constraining their masses and population are discussed.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)AstronomyAstrophysics::High Energy Astrophysical PhenomenaCosmic microwave backgroundPopulationDark matterGeophysics. Cosmic physicsFOS: Physical sciencesPrimordial black holeQB1-991AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGravitational microlensing01 natural sciencesCosmologydark matteraccretion0103 physical sciences010306 general physicseducationAstrophysics::Galaxy AstrophysicsPhysicseducation.field_of_study010308 nuclear & particles physicsGravitational waveQC801-809primordial black holesAstronomy and AstrophysicsAccretion (astrophysics)gravitational waves21 cm cosmologycosmologyAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct